Nr. 017
I would reccomend a quiet interesting page with the basics geomety shapes in dinamic figures. Let s have a look!
http://tfeind.bprmedia.hu/webre/Tartalom.htm
Geo
descriptive geometry
2011. december 2., péntek
2011. november 29., kedd
Representation of circle
Nr. 016
Represent a circle in Monge throught the following problem:
The solution of the construction:
http://hasznosdoksik.hu/geo/korszerkesztes.pdf
Represent a circle in Monge throught the following problem:
There is P point and t=XY line and T pont on it. Construct a circle passing throught P point and t is a tangent in T point. Show the main diameters of the circle and the tangent of them. P(45, 70, 235); X(45, 100, 275); T(100, --, --); Y(200, 150, 205).
http://hasznosdoksik.hu/geo/korszerkesztes.pdf
2011. november 6., vasárnap
Intersection of two prism
Nr. 015
Let's see an intersection of two polohedrons.
Click for the solution:
Metrical construction of a prism
Nr. 014.
Construct a right prism with regular pentagon base. See the task and the solution here:
Intersection of a plane and a sphere
Nr. 013.
Here a 3D picture of the solution of the intersection. If you remove the plane from your sphere it might look like this:
http://hasznosdoksik.hu/geo/gomb_sik.pdf
2011. november 5., szombat
Intersection of a pair of plane sheets
Nr. 012
Follow the solution in the link below:
http://hasznosdoksik.hu/geo/sikmetszes_tranzverzalis.pdf
Construct a prism
Nr. 011
See the solution here:
http://hasznosdoksik.hu/geo/testepites_hasab.pdf
2011. október 28., péntek
Polyhedron construction (pyramid)
Nr. 010
Construct a right pyramid with base hexagonal ABCDEF square. The A and B points are laying on the e=XY line, the base circle is given by O, witch is laying down on the secondprojeting plane of e. The height of the polyhedron is m. Choose the right side of the solutions. Show the visibility. X(30,115, 240); Y(165, 40, 50); O(60, 65, -); m=110
Here the construction step by step:
http://hasznosdoksik.hu/geo/gula_epites_.pdf
Transversal 3. (normal transversal)
Nr. 009
Special transversal is perpendicular to the skews lines.
Here the steps to the construction:
http://hasznosdoksik.hu/geo/tranzverzalis_normal.pdf
Special transversal is perpendicular to the skews lines.
Here the steps to the construction:
http://hasznosdoksik.hu/geo/tranzverzalis_normal.pdf
Transversal 2. (paralell with a direction)
Nr. 008
Second part is to draw a transversal paralell with a direction between two skew lines.
http://hasznosdoksik.hu/geo/tranzverzalis_irannyal.pdf
Second part is to draw a transversal paralell with a direction between two skew lines.
http://hasznosdoksik.hu/geo/tranzverzalis_irannyal.pdf
Feliratkozás:
Bejegyzések (Atom)